Energy in plastics technology : fundamentals and applications for engineers / Wolfgang Kaiser and Willy Schlachter.

By: Contributor(s): Publication details: Munich : Hanser Publishers, ©2023Content type:
  • Tekst
Media type:
  • Bez urządzenia pośredniczącego
Carrier type:
  • Wolumin
ISBN:
  • 9781569908983
  • 9781569909201
Subject(s):
Contents:
Intro -- The Authors -- Preface -- Contents -- List of Symbols -- Greek Characters -- Latin Characters -- Part 1 Introductory Fundamentals -- 1 Introduction -- 1.1 The Importance of Energy Technology in Plastic Processing -- 1.2 Plastic Processing Stages -- 1.3 Logic for Processing Design -- 1.4 Required Fundamentals -- 1.4.1 Overview -- 1.4.2 System Analysis -- 1.4.3 Kinds of Systems -- 1.4.4 Methodology for Solving Thermal Systems Problems -- 1.5 Example B 1.1: Interaction with the Surroundings for System Boundaries A and B of System "Extruder" -- 2 Material Behavior of Plastics -- 2.1 Chemical Basics -- 2.1.1 Polymer Raw Material(s) -- 2.1.2 Additive(s) -- 2.1.3 Classification of Plastics -- 2.1.4 Bonding Forces in Macromolecular Systems -- 2.1.4.1 Main Valence Bonds -- 2.1.4.2 Secondary Valence Bonds -- 2.1.4.3 Mechanical Bonds -- 2.2 Physical Basics -- 2.2.1 Behavior of Plastics in the Solid State -- 2.2.1.1 Density ρ -- 2.2.1.2 Specific Volume v -- 2.2.1.3 Thermomechanical Behavior -- 2.2.1.4 Time-Dependent Mechanical Behavior (Chrono-Mechanical Behavior) -- 2.2.2 Behavior of Plastics in the Viscous or "Molten" State -- 2.2.2.1 Viscosity Functions of Thermoplastic Melts -- 2.2.2.2 Time Behavior of Thermally Unstable Thermoplastic Melts and Reacting Molding Compounds -- 2.3 Thermodynamic Properties -- 2.3.1 Thermal Characteristic Data -- 2.3.1.1 Specific Heat Capacity cp -- 2.3.1.2 Specific Enthalpy h, Specific Enthalpy of Fusion hfus -- 2.3.1.3 Specific Entropy s -- 2.3.1.4 Thermal Conductivity λ -- 2.3.1.5 Thermal Diffusivity a and Thermal Effusivity b -- 2.3.1.6 Thermal Expansion -- 2.3.2 Measuring Methods for Determining Thermal Parameters -- 2.3.3 Energetic Approach -- 2.3.3.1 Resource Efficiency -- 2.3.3.2 Energy Balances in Thermodynamics -- 2.3.3.3 Energy Balances in Plastics Technology -- 2.3.3.4 Sankey Diagrams.
2.3.3.5 Light Energy and Plastics Engineering -- 2.3.4 p-v-T Diagrams -- 2.3.4.1 Coefficient of Volume Expansion βv -- 2.3.4.2 Compressibility κ -- 2.3.4.3 Process Sequence in the p-v-T Diagram for Injection Molding -- 2.4 The Ageing of Plastics -- 2.4.1 Ageing and Ageing Processes -- 2.4.2 Thermal Influences during Ageing of Plastics -- 2.4.3 Light Influences during Ageing of Plastics -- 2.5 Strain Energy and Elasticity of Solid Plastics -- 2.5.1 Work and Strain Energy -- 2.5.2 Elasticity Aspects of Solid Plastics -- 2.6 Example B 2.1: Simplified Modeling of Viscoelastic Behavior -- 2.7 Example B 2.2: Energetic Vibration Analysis Based on the Kelvin-Voigt Model -- 3 Thermodynamics -- 3.1 Overview -- 3.1.1 Four Laws of Thermodynamics -- 3.1.2 Substance Behavior and Equations of State -- 3.2 First Law of Thermodynamics for Closed Systems -- 3.2.1 Total Energy, Internal Energy, Mechanical Energy -- 3.2.2 Energy Balance for Closed Systems -- 3.2.3 Energy Transfer by Heat -- 3.2.4 Energy Transfer by Work -- 3.2.5 Compression/Expansion/Displacement Work and Quasi-Equilibrium Process -- 3.2.6 Reversible and Irreversible Processes -- 3.2.7 Friction Work -- 3.2.8 First Law for Closed Systems Subjected to Compression/Expansion at Constant Volume and Friction Work -- 3.2.9 First T ∙ ds Relation -- 3.3 First Law of Thermodynamics for Open Systems -- 3.3.1 Introduction -- 3.3.2 Mass Rate Balance -- 3.3.3 Flow Work, Enthalpy, and Energy Rate Balance -- 3.3.4 Special Case: Bernoulli Equation -- 3.3.5 Specific Heat Capacity at Constant Pressure -- 3.3.6 Second T ∙ ds Relation -- 3.3.7 First Law for Open Systems Subjected to Compression/Expansion and Friction Work -- 3.4 Plasticization of Plastics by Work -- 3.5 Chemical Reactions -- 3.5.1 Introduction -- 3.5.2 Some Definitions -- 3.5.3 Gibbs Free Energy in Reactions: Exergonic and Endergonic Reactions.
3.5.4 Gibbs Free Energy in Reactions: Maximum Work -- 3.6 Example B 3.1: Heat Pump -- 3.7 Example B 3.2: Isentropic and Polytropic Changes of State of Ideal Gases -- 3.8 Example B 3.3: Filling a Compressed-Air Storage Tank -- 3.9 Example B 3.4: Thermodynamic Measurement Method for Centrifugal Pump -- 4 Fluid Mechanics I -- 4.1 Introduction -- 4.1.1 General Comments -- 4.1.2 Basic Flow Types -- 4.2 Classification of Viscous Fluids -- 4.2.1 Simple Shear Flow and Shear Viscosity -- 4.2.2 Elongational Flow and Elongational Viscosity -- 4.2.3 Physical Phenomena -- 4.2.3.1 Newtonian and Non-Newtonian Fluid Behavior, Experimental Observations -- 4.2.3.2 Remarks on the Tensorial and Vectorial Description -- 4.3 Introduction to Dimensional Analysis and Similarity Using the Example of Pipe Flow -- 4.3.1 Basic Considerations -- 4.3.2 Moody Diagram -- 4.3.3 Hydraulic Diameter -- 4.4 Fully Developed Laminar Flow of Newtonian Fluids in Channels of Simple Geometry -- 4.4.1 Circular Pipe -- 4.4.2 Slit and Rectangular Channel of Finite Width -- 4.5 Pressure Loss of Newtonian Fluids in Piping Systems -- 4.6 Example B 4.1: Pipe Flow - Pressure Loss and Increase of Temperature Due to Dissipation -- 4.7 Example B 4.2: Comments on the Friction Factor λ -- 4.8 Example B 4.3: Comments on the Evaluation of Model Tests -- 5 Heat Transfer -- 5.1 Overview and Definitions -- 5.2 Steady-State Conduction and Total Heat Transfer -- 5.2.1 Fourier's Law of Heat Conduction -- 5.2.2 Total Heat Transfer through Plane Walls -- 5.2.3 One-Dimensional Radial Heat Conduction -- 5.3 Heat Exchangers and Logarithmic Mean Temperature Difference -- 5.4 Convection - General Comments -- 5.5 Forced Convection -- 5.5.1 Internal Flow (Pipes, Channels) -- 5.5.2 External Flow (Flat Plate in Parallel Flow, Bodies in Crossflow) -- 5.5.3 Impinging Jets -- 5.6 Free Convection.
5.7 Heat Transfer by Radiation -- 5.7.1 Introduction and Definitions -- 5.7.2 Blackbody Radiation -- 5.7.3 Emissivity, Absorptivity, Reflectivity, Transmissivity -- 5.7.4 Radiation Properties Interrelations -- 5.7.5 Radiative Exchange - Introduction -- 5.7.6 The Geometric View Factor -- 5.7.7 Blackbody Radiative Exchange -- 5.7.8 Radiative Exchange between Diffuse-Gray Surfaces -- 5.8 Example B 5.1: Critical Insulation Radius -- 5.9 Example B 5.2: Insulation of a Hot-Water Pipe -- 5.10 Example B 5.3: Cooling of a Sheet -- 5.11 Example B 5.4: Heat Loss of an Injection Molding Tool -- 5.12 Example B 5.5: Effect of Radiation Shields -- Part 2 Advanced Fundamentals -- 6 Steady-State Heat Conduction -- 6.1 Heat Transfer from Extended Surfaces: Fins -- 6.1.1 Energy Rate Balance -- 6.1.2 Long Fin -- 6.1.3 Fin of Finite Length with Insulated Tip -- 6.1.4 Fin Efficiency and Fin Effectiveness -- 6.1.5 Longitudinal Conduction in Long Rods with Relative Motion -- 6.2 Example B 6.1: Fin and System Effectiveness -- 6.3 Example B 6.2: Cooling of a Polyamide Wire - Steady-State Analysis -- 7 Transient Heat Conduction -- 7.1 Introduction and Fourier's Equation of Heat Conduction -- 7.2 Introduction to One-Dimensional Conduction, Biot Number and Fourier Number -- 7.2.1 Initial Phase (Early Regime) -- 7.2.2 Late Phase (Late Regime) -- 7.2.3 Semi-Infinite Solid Body (Early Regime) -- 7.3 Contact Problem: Two Semi-Infinite Solids Brought into Interfacial Contact -- 7.4 Periodic Temperature Variations -- 7.5 Unidirectional Conduction in Simple Bodies - Introduction -- 7.6 Unidirectional Conduction in Simple Bodies - Plate -- 7.7 Unidirectional Conduction in Simple Bodies - Cylinder and Sphere -- 7.7.1 Infinite Cylinder -- 7.7.2 Sphere -- 7.8 Approximate Solutions for Plate, Cylinder, and Sphere -- 7.8.1 Introduction -- 7.8.2 Estimation of Cooling Time.
7.8.3 Effective Thermal Diffusivity aeff -- 7.9 Example B 7.1: Cooling of a Polyamide Wire - Transient Analysis -- 7.10 Example B 7.2: Wall Thickness versus Cycle Time -- 7.11 Example B 7.3: Cooling of a Tool -- 7.12 Example B 7.4: PVC Film Cooling on Roller -- 8 Thermodynamics of Air-Drying -- 8.1 Introduction -- 8.2 Psychrometrics -- 8.2.1 Properties of Moist Air -- 8.2.2 Analyzing Elementary Processes -- 8.2.3 Characteristics of Moist Solids -- 8.2.4 Mass and Energy Rate Balance -- 8.3 Additional Aspects of Air-Drying -- 8.3.1 (De)Sorption Isotherm -- 8.3.2 Cooling Limit, Dry-Bulb, Wet-Bulb, and Adiabatic Saturation Temperatures -- 8.3.3 Time Course of Air-Drying Processes -- 8.3.3.1 Qualitative Considerations -- 8.3.3.2 Simplified Analysis of Drying Phase I -- 8.3.3.3 Analogy between Heat and Mass Transfer -- 8.3.3.4 Analysis of Air-Drying of Solids in Through-Flow and Overflow Arrangements (Conveyer Belt) -- 8.4 Example B 8.1: Granulate Drying -- 8.5 Example B 8.2: Adiabatic Saturation Temperature -- 8.6 Example B 8.3: Conveyer-Belt Dryer -- 9 Fluid Mechanics II -- 9.1 Introduction -- 9.2 Power-Law Model (Ostwald-de Waele) -- 9.3 Plane Drag and Pressure Flow of Newtonian Fluids between Parallel Plates -- 9.3.1 Velocity Profile -- 9.3.2 Temperature Profile of Pure Drag Flow -- 9.3.3 Consideration of Heat Flux in Pure Drag Flow -- 9.4 Plane Pressure Flow of Non-Newtonian Fluids between Parallel Plates -- 9.4.1 Velocity Profile -- 9.4.2 Temperature Profile -- 9.5 Axial Pipe Flow of Non-Newtonian Fluids -- 9.5.1 Velocity Profile -- 9.5.2 Temperature Profile -- 9.6 Newtonian Fluid in Axial Annular Flow -- 9.7 Pumping Power and Dissipation -- 9.8 Concluding Remarks -- 9.9 Example B 9.1: Friction Pump -- 9.10 Example B 9.2: On the Similarity Theory of Non-Newtonian Fluids -- 9.11 Example B 9.3: Emptying a Container.
9.12 Example B 9.4: Viscous Pipe Flow: Pressure Drop and Temperature Increase.
Summary: "Energy in Plastics Technology" provides, unlike any other book, the necessary fundamentals for dealing with thermotechnical issues in the processing of plastics, leading to efficient, robust, reliable, economical, and environmentally friendly processes for high-quality products. Included are the following subject areas: Thermodynamics (main theorems, treatment of chemical transformations); Fluid mechanics including explanation of similarity theory; Heat transfer (free and forced convection, steady-state and unsteady-state heat conduction, some aspects of heat transfer by radiation); Thermal and caloric state behavior, deformation and flow behavior of plastics (rheology). The fundamentals provided are applied - in exemplary calculation examples - to problems relevant to practice in the most important processing and forming methods: heating and cooling processes of molds, extrusion, blow molding, injection molding, pressing of thermosets and thermoplastics, calendering, FRP forming, foaming, casting, additive processes, forming processes, welding, coating processes. The focus is on energy consumption in the form of heat and work (economic and ecological aspects) as well as the resulting temperatures (quality aspects).
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Księgozbiór Podstawowy Biblioteka Główna Politechniki Częstochowskiej Magazyn Biblioteki Głównej Z 112880 Available 16000000051789
Total holds: 0

Indeks.

Intro -- The Authors -- Preface -- Contents -- List of Symbols -- Greek Characters -- Latin Characters -- Part 1 Introductory Fundamentals -- 1 Introduction -- 1.1 The Importance of Energy Technology in Plastic Processing -- 1.2 Plastic Processing Stages -- 1.3 Logic for Processing Design -- 1.4 Required Fundamentals -- 1.4.1 Overview -- 1.4.2 System Analysis -- 1.4.3 Kinds of Systems -- 1.4.4 Methodology for Solving Thermal Systems Problems -- 1.5 Example B 1.1: Interaction with the Surroundings for System Boundaries A and B of System "Extruder" -- 2 Material Behavior of Plastics -- 2.1 Chemical Basics -- 2.1.1 Polymer Raw Material(s) -- 2.1.2 Additive(s) -- 2.1.3 Classification of Plastics -- 2.1.4 Bonding Forces in Macromolecular Systems -- 2.1.4.1 Main Valence Bonds -- 2.1.4.2 Secondary Valence Bonds -- 2.1.4.3 Mechanical Bonds -- 2.2 Physical Basics -- 2.2.1 Behavior of Plastics in the Solid State -- 2.2.1.1 Density ρ -- 2.2.1.2 Specific Volume v -- 2.2.1.3 Thermomechanical Behavior -- 2.2.1.4 Time-Dependent Mechanical Behavior (Chrono-Mechanical Behavior) -- 2.2.2 Behavior of Plastics in the Viscous or "Molten" State -- 2.2.2.1 Viscosity Functions of Thermoplastic Melts -- 2.2.2.2 Time Behavior of Thermally Unstable Thermoplastic Melts and Reacting Molding Compounds -- 2.3 Thermodynamic Properties -- 2.3.1 Thermal Characteristic Data -- 2.3.1.1 Specific Heat Capacity cp -- 2.3.1.2 Specific Enthalpy h, Specific Enthalpy of Fusion hfus -- 2.3.1.3 Specific Entropy s -- 2.3.1.4 Thermal Conductivity λ -- 2.3.1.5 Thermal Diffusivity a and Thermal Effusivity b -- 2.3.1.6 Thermal Expansion -- 2.3.2 Measuring Methods for Determining Thermal Parameters -- 2.3.3 Energetic Approach -- 2.3.3.1 Resource Efficiency -- 2.3.3.2 Energy Balances in Thermodynamics -- 2.3.3.3 Energy Balances in Plastics Technology -- 2.3.3.4 Sankey Diagrams.

2.3.3.5 Light Energy and Plastics Engineering -- 2.3.4 p-v-T Diagrams -- 2.3.4.1 Coefficient of Volume Expansion βv -- 2.3.4.2 Compressibility κ -- 2.3.4.3 Process Sequence in the p-v-T Diagram for Injection Molding -- 2.4 The Ageing of Plastics -- 2.4.1 Ageing and Ageing Processes -- 2.4.2 Thermal Influences during Ageing of Plastics -- 2.4.3 Light Influences during Ageing of Plastics -- 2.5 Strain Energy and Elasticity of Solid Plastics -- 2.5.1 Work and Strain Energy -- 2.5.2 Elasticity Aspects of Solid Plastics -- 2.6 Example B 2.1: Simplified Modeling of Viscoelastic Behavior -- 2.7 Example B 2.2: Energetic Vibration Analysis Based on the Kelvin-Voigt Model -- 3 Thermodynamics -- 3.1 Overview -- 3.1.1 Four Laws of Thermodynamics -- 3.1.2 Substance Behavior and Equations of State -- 3.2 First Law of Thermodynamics for Closed Systems -- 3.2.1 Total Energy, Internal Energy, Mechanical Energy -- 3.2.2 Energy Balance for Closed Systems -- 3.2.3 Energy Transfer by Heat -- 3.2.4 Energy Transfer by Work -- 3.2.5 Compression/Expansion/Displacement Work and Quasi-Equilibrium Process -- 3.2.6 Reversible and Irreversible Processes -- 3.2.7 Friction Work -- 3.2.8 First Law for Closed Systems Subjected to Compression/Expansion at Constant Volume and Friction Work -- 3.2.9 First T ∙ ds Relation -- 3.3 First Law of Thermodynamics for Open Systems -- 3.3.1 Introduction -- 3.3.2 Mass Rate Balance -- 3.3.3 Flow Work, Enthalpy, and Energy Rate Balance -- 3.3.4 Special Case: Bernoulli Equation -- 3.3.5 Specific Heat Capacity at Constant Pressure -- 3.3.6 Second T ∙ ds Relation -- 3.3.7 First Law for Open Systems Subjected to Compression/Expansion and Friction Work -- 3.4 Plasticization of Plastics by Work -- 3.5 Chemical Reactions -- 3.5.1 Introduction -- 3.5.2 Some Definitions -- 3.5.3 Gibbs Free Energy in Reactions: Exergonic and Endergonic Reactions.

3.5.4 Gibbs Free Energy in Reactions: Maximum Work -- 3.6 Example B 3.1: Heat Pump -- 3.7 Example B 3.2: Isentropic and Polytropic Changes of State of Ideal Gases -- 3.8 Example B 3.3: Filling a Compressed-Air Storage Tank -- 3.9 Example B 3.4: Thermodynamic Measurement Method for Centrifugal Pump -- 4 Fluid Mechanics I -- 4.1 Introduction -- 4.1.1 General Comments -- 4.1.2 Basic Flow Types -- 4.2 Classification of Viscous Fluids -- 4.2.1 Simple Shear Flow and Shear Viscosity -- 4.2.2 Elongational Flow and Elongational Viscosity -- 4.2.3 Physical Phenomena -- 4.2.3.1 Newtonian and Non-Newtonian Fluid Behavior, Experimental Observations -- 4.2.3.2 Remarks on the Tensorial and Vectorial Description -- 4.3 Introduction to Dimensional Analysis and Similarity Using the Example of Pipe Flow -- 4.3.1 Basic Considerations -- 4.3.2 Moody Diagram -- 4.3.3 Hydraulic Diameter -- 4.4 Fully Developed Laminar Flow of Newtonian Fluids in Channels of Simple Geometry -- 4.4.1 Circular Pipe -- 4.4.2 Slit and Rectangular Channel of Finite Width -- 4.5 Pressure Loss of Newtonian Fluids in Piping Systems -- 4.6 Example B 4.1: Pipe Flow - Pressure Loss and Increase of Temperature Due to Dissipation -- 4.7 Example B 4.2: Comments on the Friction Factor λ -- 4.8 Example B 4.3: Comments on the Evaluation of Model Tests -- 5 Heat Transfer -- 5.1 Overview and Definitions -- 5.2 Steady-State Conduction and Total Heat Transfer -- 5.2.1 Fourier's Law of Heat Conduction -- 5.2.2 Total Heat Transfer through Plane Walls -- 5.2.3 One-Dimensional Radial Heat Conduction -- 5.3 Heat Exchangers and Logarithmic Mean Temperature Difference -- 5.4 Convection - General Comments -- 5.5 Forced Convection -- 5.5.1 Internal Flow (Pipes, Channels) -- 5.5.2 External Flow (Flat Plate in Parallel Flow, Bodies in Crossflow) -- 5.5.3 Impinging Jets -- 5.6 Free Convection.

5.7 Heat Transfer by Radiation -- 5.7.1 Introduction and Definitions -- 5.7.2 Blackbody Radiation -- 5.7.3 Emissivity, Absorptivity, Reflectivity, Transmissivity -- 5.7.4 Radiation Properties Interrelations -- 5.7.5 Radiative Exchange - Introduction -- 5.7.6 The Geometric View Factor -- 5.7.7 Blackbody Radiative Exchange -- 5.7.8 Radiative Exchange between Diffuse-Gray Surfaces -- 5.8 Example B 5.1: Critical Insulation Radius -- 5.9 Example B 5.2: Insulation of a Hot-Water Pipe -- 5.10 Example B 5.3: Cooling of a Sheet -- 5.11 Example B 5.4: Heat Loss of an Injection Molding Tool -- 5.12 Example B 5.5: Effect of Radiation Shields -- Part 2 Advanced Fundamentals -- 6 Steady-State Heat Conduction -- 6.1 Heat Transfer from Extended Surfaces: Fins -- 6.1.1 Energy Rate Balance -- 6.1.2 Long Fin -- 6.1.3 Fin of Finite Length with Insulated Tip -- 6.1.4 Fin Efficiency and Fin Effectiveness -- 6.1.5 Longitudinal Conduction in Long Rods with Relative Motion -- 6.2 Example B 6.1: Fin and System Effectiveness -- 6.3 Example B 6.2: Cooling of a Polyamide Wire - Steady-State Analysis -- 7 Transient Heat Conduction -- 7.1 Introduction and Fourier's Equation of Heat Conduction -- 7.2 Introduction to One-Dimensional Conduction, Biot Number and Fourier Number -- 7.2.1 Initial Phase (Early Regime) -- 7.2.2 Late Phase (Late Regime) -- 7.2.3 Semi-Infinite Solid Body (Early Regime) -- 7.3 Contact Problem: Two Semi-Infinite Solids Brought into Interfacial Contact -- 7.4 Periodic Temperature Variations -- 7.5 Unidirectional Conduction in Simple Bodies - Introduction -- 7.6 Unidirectional Conduction in Simple Bodies - Plate -- 7.7 Unidirectional Conduction in Simple Bodies - Cylinder and Sphere -- 7.7.1 Infinite Cylinder -- 7.7.2 Sphere -- 7.8 Approximate Solutions for Plate, Cylinder, and Sphere -- 7.8.1 Introduction -- 7.8.2 Estimation of Cooling Time.

7.8.3 Effective Thermal Diffusivity aeff -- 7.9 Example B 7.1: Cooling of a Polyamide Wire - Transient Analysis -- 7.10 Example B 7.2: Wall Thickness versus Cycle Time -- 7.11 Example B 7.3: Cooling of a Tool -- 7.12 Example B 7.4: PVC Film Cooling on Roller -- 8 Thermodynamics of Air-Drying -- 8.1 Introduction -- 8.2 Psychrometrics -- 8.2.1 Properties of Moist Air -- 8.2.2 Analyzing Elementary Processes -- 8.2.3 Characteristics of Moist Solids -- 8.2.4 Mass and Energy Rate Balance -- 8.3 Additional Aspects of Air-Drying -- 8.3.1 (De)Sorption Isotherm -- 8.3.2 Cooling Limit, Dry-Bulb, Wet-Bulb, and Adiabatic Saturation Temperatures -- 8.3.3 Time Course of Air-Drying Processes -- 8.3.3.1 Qualitative Considerations -- 8.3.3.2 Simplified Analysis of Drying Phase I -- 8.3.3.3 Analogy between Heat and Mass Transfer -- 8.3.3.4 Analysis of Air-Drying of Solids in Through-Flow and Overflow Arrangements (Conveyer Belt) -- 8.4 Example B 8.1: Granulate Drying -- 8.5 Example B 8.2: Adiabatic Saturation Temperature -- 8.6 Example B 8.3: Conveyer-Belt Dryer -- 9 Fluid Mechanics II -- 9.1 Introduction -- 9.2 Power-Law Model (Ostwald-de Waele) -- 9.3 Plane Drag and Pressure Flow of Newtonian Fluids between Parallel Plates -- 9.3.1 Velocity Profile -- 9.3.2 Temperature Profile of Pure Drag Flow -- 9.3.3 Consideration of Heat Flux in Pure Drag Flow -- 9.4 Plane Pressure Flow of Non-Newtonian Fluids between Parallel Plates -- 9.4.1 Velocity Profile -- 9.4.2 Temperature Profile -- 9.5 Axial Pipe Flow of Non-Newtonian Fluids -- 9.5.1 Velocity Profile -- 9.5.2 Temperature Profile -- 9.6 Newtonian Fluid in Axial Annular Flow -- 9.7 Pumping Power and Dissipation -- 9.8 Concluding Remarks -- 9.9 Example B 9.1: Friction Pump -- 9.10 Example B 9.2: On the Similarity Theory of Non-Newtonian Fluids -- 9.11 Example B 9.3: Emptying a Container.

9.12 Example B 9.4: Viscous Pipe Flow: Pressure Drop and Temperature Increase.

"Energy in Plastics Technology" provides, unlike any other book, the necessary fundamentals for dealing with thermotechnical issues in the processing of plastics, leading to efficient, robust, reliable, economical, and environmentally friendly processes for high-quality products. Included are the following subject areas: Thermodynamics (main theorems, treatment of chemical transformations); Fluid mechanics including explanation of similarity theory; Heat transfer (free and forced convection, steady-state and unsteady-state heat conduction, some aspects of heat transfer by radiation); Thermal and caloric state behavior, deformation and flow behavior of plastics (rheology). The fundamentals provided are applied - in exemplary calculation examples - to problems relevant to practice in the most important processing and forming methods: heating and cooling processes of molds, extrusion, blow molding, injection molding, pressing of thermosets and thermoplastics, calendering, FRP forming, foaming, casting, additive processes, forming processes, welding, coating processes. The focus is on energy consumption in the form of heat and work (economic and ecological aspects) as well as the resulting temperatures (quality aspects).

There are no comments on this title.

to post a comment.